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1 Introducing the SVD

Here’s the main thing:

Theorem 1.1. An m× n real matrix M can be factored as M = UΣV T , where:

U is an m×m orthogonal matrix.

Σ is an m× n diagonal matrix with Σ11 ≥ Σ22 ≥ · · · ≥ Σmin(m,n),min(m,n) ≥ 0.

V is in an n× n orthogonal matrix.

In words, the SVD is a way to write a matrix as a rotation given by V T , followed by a (possibly
dimension-changing) rescaling of the coordinate axes given by Σ, followed by another rotation given
by U .
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Here’s some more key terminology:

Terminology 1.1.

• The columns u1, . . . , um ∈ Rm of U are called the left singular vectors of A.

• The entries Σii =: σi for i = 1, . . . ,min(m,n) are called the singular values of A.

• The columns v1, . . . , vn ∈ Rn of V are called the right singular vectors of A.

And here’s a very useful version of the SVD in terms of the above:

Proposition 1.1.1. M = UΣV T =
∑min(m,n)

i=1 σiuiv
T
i .

Note that Mvj = σiuiv
T
i vj = σjuj . So M sends the orthogonal basis vj to the orthogonal basis

ui, with rescalings σi. In other words, every matrix is diagonal if one uses the right bases for the
domain and codomain.

2 The SVD makes a lot about the matrix M explicit

• The rank of M is the number of nonzero singular values; let’s call it k.

• The first k right singular vectors are an orthonormal basis of the row space of M .

• The last n− k right singular vectors are an orthonormal basis of the nullspace of M . (Thus,
the nullity of M is n− k.)

• The first k left singular vectors are an orthonormal basis of the column space of M .

• The last m− k left singular vectors are an orthonormal basis of the left nullspace of M .
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3 Also, the SVD makes a lot about M as a data matrix ex-
plicit

3.1 Approximating a data set with a lower-dimensional one

The SVD provides the best way to approximate a data set with a lower-dimensional data set.
Suppose that M is a data matrix, i.e., that a vector data set w1, . . . , wm ∈ Rn is placed as the rows
of the m×n matrix M . Then, the top right singular vector v1 is the direction in which the data set
has the highest L2 norm; i.e., it’s a solution to the following optimization problem:

max
x∈Rn

m∑
i=1

∥projxwi∥2 = max
x∈Rn s.t. ∥x∥=1

xTMTMx.

More generally, the subspace spanned by the first k right singular vectors has the largest possible
sum of L2 norms of projections of the data set among all subspaces of dimension ≤ k:

span(v1, . . . , vk) ∈ argmax
A⊆Rn s.t. dimA=k

m∑
i=1

∥projAwi∥2

Equivalently, since

m∑
i=1

∥projAwi∥2 +
m∑
i=1

∥projA⊥wi∥2 =

m∑
i=1

∥wi∥2 = const,

this optimization problem is equivalent to minimizing the reconstruction error

m∑
i=1

∥projA⊥wi∥2 =

m∑
i=1

∥wi − projAwi∥2 .

Since projA wi = argmina∈A ∥wi − a∥2, we have ∥wi − projAwi∥ = mina∈A ∥wi − a∥2, so the
minimization problem can be rewritten as

min
A of dimension k

m∑
i=1

min
a∈A

∥wi − a∥2 .

Restating the minimization problem in terms of a basis a1, . . . , ak of A and coefficients ci1, . . . , cik
in terms of which to approximate wi, this optimization problem becomes

min
a1,...,ak∈Rk

m∑
i=1

min
ci1,...,cik

∥∥∥∥∥∥wi −
k∑

j=1

cijaj

∥∥∥∥∥∥
2

= min
a1,...,ak∈Rk

min
(cij)(i,j)∈[m]×[k]

m∑
i=1

∥∥∥∥∥∥wi −
k∑

j=1

cijaj

∥∥∥∥∥∥
2

= min
a1,...,ak∈Rk

min
(cij)(i,j)∈[m]×[k]

m∑
i=1

n∑
k=1

wik −
k∑

j=1

cijajk

2

= min
A a k×n matrix

min
C an m×k matrix

∥M − CA∥2F ,

where ∥M∥F denotes the Frobenius norm of M , i.e., the square root of the sum of squares of all
entries of M . This is now the problem of finding a low-rank factorization of M that approximates
it. There is an analogous optimization problem, important in data science and in interpretability,
called Non-Negative Matrix Factorization (NMF),1 which is exactly the same but with the additional
requirement that the entries of each matrix are non-negative,2 which turns out to be difficult to solve
exactly. However, this version of the problem turns out to be easy to solve — an optimum is given
in terms of the SVD by A being V T truncated to just the first k rows, and C being UΣ truncated
to just the first k columns.

The minimum of the problem above is the same as the minimum of the following problem:

min
M̃ of rank k

∥∥∥M − M̃
∥∥∥
F
,

which is correspondingly solved in terms of the SVD:

1Here are two interpretability pieces which use NMF: https://jalammar.github.io/explaining-transformers/
and https://arxiv.org/abs/2111.09259.

2For instance, because the data set might be the non-negative activation vectors from a Relu neural net, and because
we might want each basis vector to be a possible activation vector (so positive) to be individually interpretable, or
because we might want coefficients to plausibly correspond to the presence of some quality in the data which does
not have a reasonable ‘negative presence’.
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Theorem 3.1 (Eckart-Young-Mirsky Theorem (Frobenius norm version)). Among matrices of rank

≤ k, the
∥∥∥M − M̃

∥∥∥
F

is minimized at M̃ =
∑k

i=1 σiuiv
T
i .

Finally, there is one remaining important variant of SVD for capturing directions in which the
data has highest variance: Principal Component Analysis (PCA). PCA solves the analogous recon-
struction error minimization problem in case we get to approximate all vectors in our data set by
their mean µ = 1

m

∑m
i=1 wi by default. That is, the optimization problem solved by PCA is

min
a1,...,ak∈Rk

min
(cij)(i,j)∈[m]×[k]

m∑
i=1

n∑
k=1

wik −

µ+

k∑
j=1

cijajk

2

.

Mathematically, this is the same as finding the SVD of the dataset w′
i = wi − µ. So PCA is just

de-meaned SVD. After de-meaning, L2 norm in a direction is variance in that direction, so PCA
picks out directions of highest variance in the data.

To conclude: SVD gives the best k-dimensional approximation of a data set, and it captures the
directions in which the data has highest L2 norm. NMF is a variant sometimes used in data science
and interpretabilityfootnoteSee https://kaarelh.github.io/doc/decomposition.pdf that seeks
a subspace of high L2 norm subject to a non-negativity constraint. for more on how all this connects
to interpretability. PCA is another variant often used in data science that seeks directions of high
variance in the data.

4 Also also, the SVD makes a lot about M as a linear oper-
ator explicit

4.1 Approximating a linear map with a low-rank map

Here’s a natural way to measure the oomph of a matrix, called the operator norm:
∥M∥ = maxw∈Rn s.t. ∥w∥=1 = ∥Mw∥. It turns out that this is just equal to σ1. What’s more, as

norms do, this gives us another sense in which to ask for a rank k approximation to M :

min
M̃ of rank k

∥∥∥M − M̃
∥∥∥ .

It turns out that this is also solved by the SVD:

Theorem 4.1 (Eckart-Young-Mirsky Theorem (operator norm version)). Among matrices of rank

≤ k, we have that
∥∥∥M − M̃

∥∥∥ is minimized at M̃ =
∑k

i=1 σiuiv
T
i .

Proof. We will first show that the operator norm of a matrix is its top singular value:

∥M∥2 = max
x s.t. ∥x∥=1

∥Mx∥2 = max
x s.t. ∥x∥=1

xTMTMx = max
x s.t. ∥x∥=1

xTV ΣTUTUΣV Tx

= max
x s.t. ∥x∥=1

(V Tx)TΣTΣ(V Tx) = max
y s.t. ∥y∥=1

yT (ΣTΣ)y = max
y s.t. ∥y∥=1

n∑
i=1

σ2
i y

2
i = σ2

1 .

Since M − M̃ has SVD
∑min(m,n)

i=1 σiuiv
T
i −

∑k
i=1 σiuiv

T
i =

∑min(m,n)
i=k+1 σiuiv

T
i , its top singular

value is σk+1, so its operator norm is σk+1.
It remains to show that operator norm σk+1 is best possible. Since M̃ has rank k, there must

be a linear combination the k+1 independent vectors v1, . . . , vk+1 which is in the kernel of M ; let’s

take it to be v =
∑k+1

i=1 civi, WLOG with unit norm, so
∑k+1

i=1 c2i = 1. Then

∥∥∥M − M̃
∥∥∥2 =

∥∥∥(M − M̃
)
v
∥∥∥2 = ∥Mv∥2 =

∥∥∥∥∥
k+1∑
i=1

ciσiui

∥∥∥∥∥
2

=

k+1∑
i=1

c2iσ
2
i ≥

k+1∑
i=1

c2iσ
2
k+1 = σ2

k+1,

which is what we wanted to show.

So, in at least two very reasonable senses (plausibly in the two most reasonable senses) — the
Frobenius norm and the operator norm — the SVD gives the best low-rank approximation to M .
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4.2 The pseudoinverse

The pseudoinverse M+ of a matrix M , defined via SV D, is the best generalization of the inverse
to non-invertible matrices. (The only bad thing about it is the unfortunate notation.) For a matrix
with SVD M = UΣV T , we have

M+ = V Σ+UT ,

where (the even more unfortunately-denoted, given that it makes the whole thing look circular) Σ+

stands for ΣT with each nonzero entry σi replaced by 1
σi
.

If M is an invertible square matrix, then indeed M+M = V Σ+UTUΣV T = V Σ+ΣV T = V V T =
I, and, similarly, MM+ = I. You will see on the problem set that the pseudoinverse also generalizes
left-inverses and right-inverses.

5 Computing the SVD; or, an existence proof

For some motivation for the construction, note that if we had the SVD M = UΣV T , then MTM =
V ΣTUTUΣV T = V (ΣTΣ)V T = V (ΣTΣ)V −1, and note that ΣTΣ is a diagonal matrix. This is
expressly an eigendecomposition of the symmetric matrix MTM . Thus, if the SVD exists, the right
singular vectors are eigenvectors of MTM , and the corresponding singular values are square roots
of the corresponding eigenvalues. (This will be the starting point of the existence proof and method
of computation later.) And if we have the right singular vectors vi, then for each nonzero singular
value σi, the left singular vector ui can be recovered with Avi

σi
= 1

σj

∑
j σjujv

T
j vi =

σiui

σi
= ui. This

paragraph inspires the following existence proof of the SVD:

Proof of Theorem 1.1.1. Note that MTM is an n×n positive-semi-definite matrix, so it has a basis
of orthonormal eigenvectors v1, . . . , vn with non-negative eigenvalues

λ1 ≥ λ2 ≥ . . . λk > 0 = λk+1 = λk+2 = · · · = λn,

(possibly with k = 0 or k = n), and thus we can write:

MTM =

n∑
i=1

σ2
i viv

T
i ,

where we have defined σi =
√
λi. For 1 ≤ i ≤ k, we define ui = Mvi

σi
(as heuristically motivated

above), which implies uiσi = Mvi. Note that with 1 ≤ i < j ≤ k, we have that ui and uj must
be orthogonal, because ui · uj = 1

σiσj
viM

TMvj = λi

σiσj
vi · vj = 0. The same calculation with i = j

implies that ∥ui∥ = 1, so the vectors u1, . . . , um are an orthonormal set. Let U be the m× k matrix
with columns ui, V be the k×n matrix with rows vi, and Σ be the k×k diagonal matrix with entries
Σii = σi. We can write the equation uiσi = Mvi in terms of these matrices as UΣ = MV . Because
the kernel of MTM is the same as the kernel of M , padding V with n−k more columns vk+1, . . . , vn
just padsMV with n−k columns of zeros. We also arbitrarily complete U with orthonormal columns
into a m ×m matrix, and simultaneously pad Σ with m − k rows of zeros into a m × k matrix —
this leaves UΣ unchanged; and then, we pad Σ with n− k columns of zeros to a m× k matrix —-
this pads UΣ with n− k columns of zeros as well. Since all this has just padded both UΣ and MV
with n − k columns of zeros, we still have UΣ = MV after this. Multiplying both sides from the
right with V T gives us UΣV T = M , completing the proof.

Note that this also gives a way to compute the SVD, as long as one knows how to compute
eigenvectors.3

3So by now, one ought to know how to compute the SVD, because one ought to know how to compute eigenvectors
:)
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