
ar
X

iv
:0

90
7.

55
98

v2
 [

cs
.A

I]
 2

 D
ec

 2
00

9

CONVERGENCE OF EXPECTED UTILITY FOR UNIVERSAL AI

PETER DE BLANC
DEPARTMENT OF MATHEMATICS

TEMPLE UNIVERSITY

Date: October 23, 2018.
Written in association with the Singularity Institute for Artificial Intelligence.

0

http://arxiv.org/abs/0907.5598v2

CONVERGENCE OF EXPECTED UTILITY FOR UNIVERSAL AI 1

1. Abstract

We consider a sequence of repeated interactions between an agent and an envi-
ronment. Uncertainty about the environment is captured by a probability distri-
bution over a space of hypotheses, which includes all computable functions. Given
a utility function, we can evaluate the expected utility of any computational policy
for interaction with the environment. After making some plausible assumptions
(and maybe one not-so-plausible assumption), we show that if the utility function
is unbounded, then the expected utility of any policy is undefined.

2. AI Formalism

We will assume that the interaction between the agent and the environment
takes place in discrete time-steps, or cycles. In cycle n, the agent outputs an action
yn ∈ Y , and the environment inputs to the agent a perception xn ∈ X . Y and X
are the sets of possible actions and perceptions, respectively, and are considered as
subsets of N. Thus the story of all interaction between agent and environment is
captured by the two sequences x = (x1, x2, . . .) and y = (y1, y2, . . .).

Let us introduce a notation for substrings. If s is a sequence or string, and
{a, b} ⊆ N, a ≤ b, then define sba = (sa, sa+1, . . . sb).

We will denote the function instantiated by the environment as Q : Y ∗ → X ,
so that ∀n ∈ N, xn = Q(yn1). This means that the perception generated by the
environment at any given cycle is determined by the agent’s actions on that and
all previous cycles.

A policy for the agent is a function p : (Y ∗ ×X∗) → Y , so that an agent
implementing p at time n will choose an action yn = p

(

yn−1
1 , xn−1

1

)

.
If, at any time, an agent adopts some policy p, and continues to follow that

policy forever, then p and Q taken together completely determine the future of the
sequences (xn) and (yn). We are particularly interested in the future sequence of
perceptions, so we will define a future function Ψ(Q, p, yn1 , x

n
1) = x∞

n+1.
Because the precise nature of the environment Q is unknown to the agent, we

will let Ω be the set of possible environments. Let F be a σ-algebra on Ω, and
P : F → [0, 1] be a probability measure on F which represents the agent’s prior
information about the environment.

We will also define a function Γq : Y ∗ → X∗ which represents the perception
string output by environment q given some action string. Let
Γq (s) =

(

q
(

s11
)

, q
(

s21
)

, . . . , q (s)
)

.
The agent will compare the quality of different outcomes using a utility function

U : XN → R. We can then judge a policy by calculating the expected utility of the
outcome given that policy, which can be written as

(1) E (U (xn
1Ψ(Q, p, yn1 , x

n
1)) |ΓQ(y

n
1) = xn

1)

...where Q is being treated as a random variable. When we write a string next to
a sequence, as in xn

1Ψ(Q, p, yn1 , x
n
1), we mean to concatenate them. Here, xn

1 repre-
sents what the agent has seen in the past, and Ψ (Q, p, yn1 , x

n
1) represents something

the agent may see in the future. By concatenating them, we get a complete sequence
of perceptions, which is the input required by the utility function U .

Notice that the expected utility above is a conditional expectation. Except
on the very first time-step, the agent will already have some knowledge about

2 PETER DE BLANC DEPARTMENT OF MATHEMATICS TEMPLE UNIVERSITY

the environment. After n cycles, the agent has output the string yn1 , and the
environment has output the string xn

1 . Thus the agent’s knowledge is given by the
equation ΓQ (yn1) = xn

1 .
Agents such as AIXI (Hutter, 2007) choose actions by comparing the expected

utility of different policies. Thus we will focus, in this paper, on calculating the
expected utility of a policy.

3. Assumptions about the Hypothesis Space

Here we’ll make further assumptions about the hypothesis space (Ω, F, P). While
we could succinctly make strong assumptions that would justify our central claim,
we will instead try to give somewhat weaker assumptions, even at the loss of some
brevity.

Let ΩC be the set of computable total functions mapping Y ∗ to X . We will
assume that Ω ⊇ ΩC and that (∀q ∈ ΩC) : {q} ∈ F and P ({q}) > 0. Thus we
assume that the agent assigns a nonzero probability to any computable environment
function.

Let ΩP be the set of computable partial functions from Y ∗ toX . Then ΩC ⊂ ΩP .
The computable partial functions ΩP can be indexed by natural numbers, using
a surjective computable index function φ : N → ΩP . Since the codomain of φ
is a set of partial functions, it may be unclear what we mean when we say that
φ is computable. We mean that (i, s) → (φ (i)) (s), whose codomain is X , is a
computable partial function. We will also use the notation φi = φ (i).

We’ll now assume that there exists a computable total function ρ : N → Q such
that if φi ∈ ΩC , then 0 < ρ (i) ≤ P ({φ (i)}). Intuitively, we are saying that φ is a
way of describing computable functions using some sort of language, and that ρ is
a way of specifying lower bounds on probabilities based on these descriptions. Note
that we make no assumption about ρ (i) when φi /∈ ΩC .

To see an example of a hypothesis space satisfying all of our assumptions, let
Ω = ΩC , let F = 2ΩP , let φ be any programming language, and let ρ (i) = 2−i. Let

(2) O =
∑

i∋(φi∈ΩC)

ρ (i)

and for any ω ∈ Ω, let

(3) P ({ω}) =
1

O

∑

i∋(φi=ω)

ρ (i)

4. Assumptions about the Utility Function

Perhaps the most philosophically questionable assumption in this paper has al-
ready been made in defining the domain of the utility function U as XN, the set
of perception-sequences. This is like assuming that a person cares not about his
or her family and friends, but about his or her perception of his or her family and
friends.

Since the utility function U : XN → R takes as its argument an infinite sequence,
we must discuss what it means for such a function to be computable. Obviously any
computation which terminates can only look at a finite number of terms. Therefore
we will try to approximate U (x) using prefixes of x. We say that U is computable
if there exist computable functions UL, UU : X∗ → Q ∪ {−∞,+∞} such that, if
x ∈ XN and x̄ ∈ X∗ and x̄ ⊑ x, then:

CONVERGENCE OF EXPECTED UTILITY FOR UNIVERSAL AI 3

• UL (x̄) ≤ U(x) ≤ UU (x̄)
• UL (x̄) → U (x) and UU (x̄) → U (x) as x̄ → x.

In any case, we will not assume that U is computable, because we do not need
such a strong assumption to prove our claims. Instead we will define two possible
conditions.

Definition 1. Let D ⊆ XN and let U : D → R. Let Dp = {s ∈ X∗| (∃d ∈ D) : s ⊑
d}. Then U is computably unbounded from above on D if there exists a computable

partial function UL : Dp → Z such that:

• (∀d ∈ D) (∀s ∈ Dp) : if s ⊑ d, and if UL (s) exists, then UL (s) ≤ U (d).
• (∀m ∈ Z) (∃s ∈ Dp) : UL (s) > m.

U is computably unbounded from below if −U is computably unbounded from
above.

Note in particular that any computable function on XN which is unbounded from
above is computably unbounded from above, and any computable function which
is unbounded from below is computably unbounded from below.

The following lemma will help us find environments which generate large amounts
of utility. When considering f in the lemma, think of UL above.

Lemma 1. Suppose C ⊆ X∗, and f : C → Z is a computable partial function such

that (∀m ∈ Z) (∃c ∈ C) : f (c) > m. Then there exists a computable total function

H : Z → C such that, (∀m ∈ Z) : f ◦H (m) ≥ m.

In other words, given an unbounded partial function f , there is a computable
function H which finds an input on which f will exceed any given bound.

Proof. First we’ll index C; let C = {c1, c2, . . . }.
If f were a total function, we could simply let H (m) = cmin{i∈N:f(ci)>m}. We

would compute this by first computing f(c1), then f(c2), etc. Unfortunately we
only have that f is a partial function, so we can not proceed in this way.

Instead, we’ll note that for any input on which f halts, it must halt in a specific
number of steps. The Cantor pairing function π : N× N → N, π (k1, k2) =

1
2 (k1 +

k2)(k1 + k2 + 1) + k2 is a bijection, so we can use π−1 to index all pairs of natural
numbers. Then we can simulate f on every possible input for every number of
steps, which will allow us to evaluate f on every input for which f halts.

def H(m):

for n in (1, 2, 3, ...):

let (t, i) = pi^-1(n)

simulate f(c_i) for t steps

... if it does not finish:

do nothing.

... if it does finish:

if f(c_i) >= m:

return c_i

Then H is a computable total function and f ◦H (m) ≥ m. �

4 PETER DE BLANC DEPARTMENT OF MATHEMATICS TEMPLE UNIVERSITY

5. Results

Let R be the set of all computable partial functions mapping N to N, and let
θ : N → R be a computable index (analogous to our other index function φ).

Let

(4) B(n) = max
k≤n

θk (0)

Lemma 2. Let f ∈ R be a total function. Then B(n) > f(n) infinitely often.

Proof. Suppose not. Then B(n) > f(n) only finitely many times, so there exists
some c ∈ N such that (∀n ∈ N) : f(n) + c > B(n).

Let C(n,m) = f(n) + c. By a corollary of the Recursion Theorem, there exists
m ∈ N such that (∀n ∈ N) : θm(n) = C(m,n) = f(m) + c.

By definition, B(m) ≥ θm(0) = C(m, 0) = f(m)+ c > B(m). So B(m) > B(m),
which is a contradiction. �

Now suppose that at time n + 1, the agent has already taken actions yn1 and
made observations xn

1 , and is considering the expected utility of policy p. Let
D = {s ∈ XN : sn1 = xn

1}.

Theorem 1. If U is computably unbounded from above on D, then

E (U (xn
1Ψ(Q, p, yn1 , x

n
1)) |ΓQ(y

n
1) = xn

1) is either undefined or +∞.

Proof. Let UL : Dp → Z be as in definition 1. Then by Lemma 1, there exists
H : Z → Dp such that (∀m ∈ Z) : UL(H(m)) > m.

H here is intended to be used to construct sequences with high utility. Since
H outputs a string rather than a sequence, we will pad it to get a sequence. Let
c ∈ X be some arbitrary word in the perception alphabet. Then let H̄ : Z → D,
where H̄(n) is a sequence beginning with H(n), followed by c, c, c,

For brevity, let Wp (q) = xn
1Ψ(q, p, yn1 , x

n
1). Wp (q) represents the complete se-

quence of perceptions received by the agent, assuming that it continues to imple-
ment policy p in environment q.

We will now break up the expected utility into two terms, depending on whether
or not Q ∈ ΩC .

E (U (Wp (Q)) |ΓQ(y
n
1) = xn

1)

= P (Q ∈ ΩC)E (U (Wp (Q)) |ΓQ(y
n
1) = xn

1 , Q ∈ ΩC)

+P (Q /∈ ΩC)E (U (Wp (Q)) |ΓQ(y
n
1) = xn

1 , Q /∈ ΩC)

=
∑

q∈ΩC

U (Wp (q))P ({q}|ΓQ(y
n
1) = xn

1)

+P (Q /∈ ΩC)E (U (Wp (Q)) |ΓQ(y
n
1) = xn

1 , Q /∈ ΩC)

We will show that the series:

∑

q∈ΩC

U (Wp (q))P ({q}|ΓQ(y
n
1) = xn

1)

has infinitely many terms ≥ 1. We will do this by finding a sequence of envi-
ronments whose utilities grows very quickly - more quickly than their probabilities
can shrink.

CONVERGENCE OF EXPECTED UTILITY FOR UNIVERSAL AI 5

By equation 4, for each j ∈ N there exists uj ∈ N such that uj ≤ j and θuj
(0) =

B (j).
Now we define a map on function indices G : N → N such that:

φG(n) (γ) = H(θn(0))|γ|

So G takes the θ-index of an N → N function (say, g), and returns the φ-
index of an environment which is compatible with all the data so far, and which
is guaranteed to produce utility greater than g(0). We can assume that G is a
computable function.

So our sequence of environments will be
{

φG(uj)

}∞

j=1
.

Then U
(

Wp(φG(uj))
)

≥ B(j). Now let

(5) ρ̄(j) = ⌈max
k≤j

1

ρ(G(k))
⌉

Then ρ̄ is a computable, nondecreasing function. Since ρ̄ is computable, B(j) ≥ ρ̄(j)
infinitely often. Since uj ≤ j, then by definition, ρ̄(j) ≥ 1

ρ(G(uj))
≥ 1

P ({φG(uj)})
.

P (ΓQ(y
n
1) = xn

1 |Q = φG(uj)) = 1, so by Bayes’ Rule, P ({φG(uj)}|ΓQ(y
n
1) =

xn
1) ≥ P ({φG(uj)}). Since both sides are positive, we take the reciprocal to get

1
P ({φG(uj)

}|yn
1 ,xn

1)
≤ 1

P ({φG(uj)})
. By transitivity, U

(

Wp(φG(uj))
)

≥ 1
P ({φG(uj)}|ΓQ(yn

1)=xn
1)

infinitely often, so U
(

Wp(φG(uj))
)

P ({φG(uj)}|ΓQ(y
n
1) = xn

1) ≥ 1 infinitely often.
Since the series contains infinitely many terms ≥ 1, its limit is either +∞ or nonex-
istent. �

Corollary 1. If U is computably unbounded from below on D, then

E (U (xn
1Ψ(Q, p, yn1 , x

n
1)) |ΓQ(y

n
1) = xn

1) is either undefined or −∞.

Proof. By definition, −U is computably unbounded from above. Thus, by the-
orem 1, E (−U (xn

1Ψ(Q, p, yn1 , x
n
1)) |ΓQ(y

n
1) = xn

1) is either undefined or +∞. So
E (U (xn

1Ψ(Q, p, yn1 , x
n
1)) |ΓQ(y

n
1)) = −E (−U (xn

1Ψ(Q, p, yn1 , x
n
1)) |ΓQ(y

n
1) = xn

1) is
either undefined or −∞. �

Corollary 2. If U is computably unbounded from both below and above on D, then

E (U (xn
1Ψ(Q, p, yn1 , x

n
1)) |ΓQ(y

n
1) = xn

1) is undefined.

Proof. By theorem 1, E (U (xn
1Ψ(Q, p, yn1 , x

n
1)) |ΓQ(y

n
1) = xn

1) is either undefined or
+∞. By corollary 1, it is either undefined or −∞. Thus it is undefined. �

6. Discussion

Our main result implies that if you have an unbounded, perception determined,
computable utility function, and you use a Solomonoff-like prior (Solomonoff, 1964),
then you have no way to choose between policies using expected utility. So which
of these things should we change?

We could use a non-perception determined utility function. Then our main result
would not apply. In this case, the existence of bounded expected utility will depend
on the utility function. It may be possible to generalize our argument to some larger
class of utility functions which have a different domain.

We could use an uncomputable utility function. For instance, if the utility of
any perception-sequence is defined as equal to its Kolmogorov complexity, then the
utility function is unbounded but the expected utility of any policy is finite.

6 PETER DE BLANC DEPARTMENT OF MATHEMATICS TEMPLE UNIVERSITY

We could use a smaller hypothesis space; perhaps not all computable environ-
ments should be considered.

The simplest approach may be to use a bounded utility function. Then conver-
gence is guaranteed.

References

[1] Hutter, M., Universal Algorithmic Intelligence: A mathematical top-down approach, Artifi-
cial General Intelligence (2007), Springer

[2] Wikipedia, Kleene’s Recursion Theorem (http://en.wikipedia.org/wiki/Kleene’s recursion theorem)
[3] Solomonoff, R., A Formal Theory of Inductive Inference, Information and Control, Part I:

Vol 7, No. 1, pp. 1-22, March 1964

http://en.wikipedia.org/wiki/Kleene's_recursion_theorem

	1. Abstract
	2. AI Formalism
	3. Assumptions about the Hypothesis Space
	4. Assumptions about the Utility Function
	5. Results
	6. Discussion
	References

