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1 Introduction

The goals of this piece are the following:

1. to give a fairly solid introduction of the basic concepts required to make sense of the kind of
business convex optimization is — namely, convex sets and convex functions;

2. to try to briefly explain why convex optimization is ‘easy’;

3. to briefly explain the pipeline for using convex optimization.

2 Convex sets

We say a subset C of Rn is convex if it contains all line segments between points in it:

Definition 2.1. A set C ⊆ Rn is convex if for any points x and y in C, and t ∈ [0, 1], the point
tx+ (1− t)y is also in C.

Here are some more important examples of convex sets:

• A subspace V ⊆ Rn.

• An affine subspace — for a point a ∈ Rn and a subspace V , the set a+ V ⊆ Rn.1

• A convex cone — a set C ⊆ Rn such that whenever x, y ∈ C, for any positive coefficients
a, b > 0, also ax+ by ∈ C.

• A half-space — for a vector v ∈ Rn and constant b ∈ R, the set of all points x ∈ Rn with
x · v ≤ b.

• A polyhedron — for a matrix A ∈ Rm×n and a vector b ∈ Rm, the set of all x ∈ Rn such
that Ax ≤ b.2

• A polytope — a bounded polyhedron.3

• A ball — for some R > 0, the set of all x ∈ Rn with ∥x∥ ≤ R

Here’s an important basic property of convex sets:

Proposition 2.0.1. The intersection of a collection C of convex sets is convex.

Proof. If x, y are in the intersection
⋂

C∈C C, then x, y are also in each set C ∈ C. Therefore, for any
t ∈ [0, 1], the point tx+(1−t)y is in each C ∈ C (since each C is convex). Thus, tx+(1−t)y ∈

⋂
C∈C C,

which is what we wanted to show.

For any set, there is a canonical way to construct a corresponding convex set:

Definition 2.2. The convex hull conv(S) of a set S ⊆ Rn is the intersection of all convex subsets
of Rn that contain S.4

1Equivalently, an affine subspace is the set of all solutions x ∈ Rn to a particular equation Ax = b for some matrix
A ∈ Rm×n and vector b ∈ Rm.

2In other words: a polyhedron is the intersection of a bunch of half-spaces.
3This turns out to be equivalent to being the convex hull of a finite set of points.
4Note that there is indeed at least one such convex subset, because Rn ⊆ Rn itself is convex.
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A few remarks on conv(S):

1. Proposition 2.0.1 implies that convS is indeed convex.

2. What’s more, since any convex set in the intersection defining conv(S) contains S, we also
have that S ⊆ conv(S).

3. conv(S) is contained in every convex set which contains S (because it is the intersection of all
such sets).

In summary, conv(S) is the smallest convex set containing S. Here’s an analogue of linear
combinations useful for thinking about convex sets:

Definition 2.3. We say y ∈ Rn is a convex combination of x1, . . . , xk ∈ Rn if there are 0 ≤
t1, . . . , tk ≤ 1 such that t1 + t2 + · · ·+ tk = 1 and y = t1x1 + t2x2 + · · ·+ tkxk.

I claim without proof that a set C is convex if and only if it contains all convex combinations of
finite collections of its points.5 The notion of convex combinations lets us provide a more explicit
definition of the convex hull:

Proposition 2.0.2. The convex hull of S ⊆ Rn is the set of all convex combinations of all finite
collections of points in S.6

Proof. Let Q be the set of all convex combinations of finite collections of points in S. We will first
show that Q ⊆ conv(S). Note that if C is convex with S ⊆ C, then C must contain all convex
combinations of its points by the unproven claim above, and must therefore, in particular, contain
all convex combinations of points of S. In other words, Q ⊆ C for any convex C containing S.
Therefore, Q is in the intersection of all C ⊇ S, and so Q ⊆ conv(S).

Let us now show that conv(S) ⊆ Q. Note that Q is convex. This is because a convex combination
of convex combinations of points of S is a convex combination of points of S, so Q contains any
convex combination of its points. Note also that S ⊆ Q. So Q is a convex set containing S.
Therefore, conv(S) ⊆ Q.

We’ve established that Q ⊆ conv(S) and that conv(S) ⊆ Q. It follows that Q = conv(S).

3 Convex functions

A convex function is one with a graph such that all chords drawn on the graph are above the graph:

Definition 3.1. Let C ⊆ Rn be a convex set. We say a function f : C → R is convex if for any
x, y ∈ C and t ∈ [0, 1],

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

We say a function g is concave if −g is convex, that is, if

f(tx+ (1− t)y) ≥ tf(x) + (1− t)f(y).

Here are a number of alternative characterizations of convexity:

Theorem 3.1.

1. (Jensen’s inequality — discrete version) A function f : C → R is convex iff for any 0 ≤
t1, . . . , tk ≤ 1 with t1 + · · ·+ tk = 1 and x1, . . . , xk ∈ Rn, we have

f (t1x1 + · · ·+ tkxk) ≤ t1f(x1) + · · ·+ tkf(xk).

2. (Jensen’s inequality)7 A function f : C → R is convex iff for any random variable X taking
values in C,

f (E[X]) ≤ E[f(X)]

3. (First derivative condition) A continuously differentiable function f : C → R is convex iff for
all x, y, we have

f(y) ≥ f(x) +∇f(x)T (y − x)
5The problem set asks you to prove this.
6In fact, convex combinations of only n + 1 points suffice. See https://en.wikipedia.org/wiki/Carath%C3%

A9odory%27s_theorem_(convex_hull).
7Note that the case above is the special case of this where X takes values in a finite subset of C.
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4. (Second derivative condition) A twice continuously differentiable function f : C → R is convex
iff at all x, the Hessian Hf (x) is positive-semidefinite.

Two remarks:

• Analogous statements, i.e. the above with each inequality having its sign flipped, hold for
concave functions.

• The equality cases of these inequalities have simple characterizations. For instance, for a
convex function, f(E[X]) = E[f(X)] iff f is equal to a linear function on the support of X.

A pattern that is often useful is to show that the Hessian is positive-definite, and to conclude
from this that Jensen’s inequality holds; here’s an example:

Theorem 3.2 (Weighted AM≥GM). Let a1, . . . , ak ≥ 0, and 0 ≤ w1, . . . , wk ≤ 1 with w1+· · ·+wk =
1. Then

k∑
i=1

aiwi ≥
k∏

i=1

awi
i .

Proof. Since (log x)′′ =
(
1
x

)′
= − 1

x2 < 0, we have that log x is concave. Taking logarithms of both

sides of the desired inequality, it remains to show that log
(∑k

i=1 aiwi

)
≥

∑
wi log ai. Note that

this is the discrete version of Jensen’s inequality for log x.

4 Convex optimization

4.1 Briefly on why convex optimization is easy

A convex optimization problem is the problem of minimizing a convex function (on a convex domain).
Here’s a central reason why convex optimization is easy:

Theorem 4.1. Let C ⊆ Rn be a convex set, and let f : C → R be a convex function. If x0 ∈ C is a
local minimum of f , then x0 ∈ C is also a global minimum of f .

Proof. Suppose x0 is not a global minimum of f ; then there is x1 ̸= x0 with f(x1) < f(x0). Then
for any t ∈ [0, 1], we have f((1− t)x0+ tx1) ≤ (1− t)f(x0)+ tf(x1) < (1− t)f(x0)+ tf(x0) = f(x0).
Since if we pick t to be arbitrarily small, the point (1 − t)x0 + tx1 is in an arbitrarily small ball
around x0, there is no ball around x0 in which x0 is a minimum of f . Hence, x0 is not a local
minimum of f , a contradiction.

(Analogously, maximizing a concave function on a convex domain is also easy.)

4.2 Briefly on what convex optimization can usually be made to look like

The following is called the standard form of a convex optimization problem:

min
x

f(x)

subject to gi(x) ≤ 0

and hj(x) = 0

where the functions g1, . . . , gm : Rn → R are convex and the functions h1, . . . , hp : Rn → R are affine.

4.3 Briefly on solving convex optimization problems

There is a zoo of different types of convex optimization problems of various levels of generality, with
various solution methods. But here is what I think is a fairly general strategy. In the unconstrained
case, one can pretty much just do gradient descent, get to a local minimum, and conclude one has
found a global minimum. 8 One can get rid of equality constraints by reparametrizing. And one can
handle inequality constraints by adding a convex barrier function to the loss — that is, a function
that is mostly negligible inside the feasible region, but that blows up near the boundary. Modulo
finding at least one feasible point to start from, this turns everything else to the unconstrained case.

8I believe there is a large literature on properties of this, e.g. convergence speed, that I will not cover.
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4.4 Briefly on turning problems into convex optimization problems

I read somewhere that while there are remaining research problems in convex optimization, solving
convex optimization problems is essentially a technology by now. I’m also told that there is some
remaining art in reformulating a problem as a linear programming problem. (Of course, there is also a
bag of standard tricks for this step.) For instance, for a data set x1, . . . , xm ∈ Rn with corresponding
labels y1, . . . , ym ∈ R, consider the following problem (called the Chebyshev approximation problem):

min
a∈Rn

max
i=1,...,k

|aTxi − yi|.

This is just like the least-squares problem, but instead of minimizing the L2 norm of the vector
of differences between predictions and labels, we are minimizing the L∞ norm of this vector. We
can reformulate this as a linear programming problem by introducing an additional variable λ that
we think of as the maximum:

min
a∈Rn,λ∈R

λ

subject to aTxi − bi ≤ λ and − (aTxi − bi) ≤ λ for all 1 ≤ i ≤ m.

4


	Introduction
	Convex sets
	Convex functions
	Convex optimization
	Briefly on why convex optimization is easy
	Briefly on what convex optimization can usually be made to look like
	Briefly on solving convex optimization problems
	Briefly on turning problems into convex optimization problems


