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Here are a couple of Combinatorics problem, most of which can be solved using techniques from
linear algebra. Initially I included hints for some problems in the statements, but I have decided to
move all hints to a separate section at the end so that you can attempt the problems without looking
at the hint first, if you want. Do use the hints if you get stuck though, many of these problems are
very difficult!

If there are some words that are not explained in the problem that you do not know the meanings
of, they should have been defined in the lecture notes. If this is not the case, don’t hesitate to ask!

1 Town Problems

Problem 1.1. For a matrix A, we define rk(A) to be the column rank, i.e the dimension of the
subspace spanned by the columns of A. Prove the following facts:

(a) rk(A) = rk(AT ). In other words, the row rank (dimension of the span of the rows) is the same
as the column rank. (Note that A doesn’t have to be a square matrix).

(b) Show that if A is a k ×m matrix and B is an m× n matrix, we have that

rk(AB) ≤ min{rk(A), rk(B)}

Problem 1.2. (Eventown) In a town with n people, there is some number of clubs. Each club has
an even number of members, and any two clubs have an odd number of members in common.

(a) Show that there can be at most n different clubs.

(b) Show that the bound n is achievable when n is odd.

(c) Show that when n is even, there can be at most n − 1 clubs. Furthermore, show that this is
achievable.

Problem 1.3. In a town with n people, there arem red clubs R1, ..., Rm andm blue clubs B1, ..., Bm.
Assume that the clubs satisfy the following rules:

(a) |Ri ∩Bi| is odd for every i

(b) |Ri ∩Bj | is even for every i ̸= j

Show that m ≤ n.

Problem 1.4. In a town with n people, there is some number of clubs. Any two clubs have the
same number of members in common. Show that there can be at most n different clubs.

Problem 1.5. Prove the result about Oddtown by considering vectors over Q instead of F2.

Problem 1.6. (difficult) In a town with n people, there are m clubs. Each club has an even number
of members, and any two clubs have an even number of members in common. Show that m ≤ 2n/2.
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2 Projective Planes

A projective plane consists of a set of points P and a set of lines L. Each lines contains some of the
points in such a way that the following holds:

(a) For any two points, there is exactly one line which contains both points.

(b) For any two lines, there is exactly one point which is contained in both of them.

(c) There exists four points p1, p2, p3, p4 such that no line contains three of them.

The third condition is just a technical one which rules out some silly cases. Since the first two
conditions are completely symmetric in points and lines, anything we can prove about projective
planes will hold if we swap the roles of points and lines. This is known as point-line duality.

Given the duality between points and lines, it shouldn’t come as a huge surprise that any finite
projective plane must have the same number of lines and points. But, while it might seem plausible,
this is a fact which needs a proof.

Problem 2.1. Assume we have a finite set of n points P = {p1, ..., pn} and a set of m lines
L = {l1, ..., lm} each of which contains some of the points. Furthermore assume that no line contains
all points.

(a) Show that if for any two points there is exactly one line containing both of them, we must
have m ≥ n.

(b) Show that any projective plane must have the same number of points and lines.

(c) (difficult) Show that for any prime p, there is a projective plane containing p2 + p+ 1 points.

3 Geometry Problems

Problem 3.1. Assume that the points v1, ..., vm ∈ Rn determine exactly two distances, i.e that
there are two numbers a, b such that the distance between any two of the points is either a or b.
Consider the polynomials

fi(x1, ..., xn) = (||x− vi||2 − a2)(||x− vi||2 − b2)

(a) Show that the polynomials f1, ..., fm are linearly independent.

(b) Find a set of at most
(
n+4
4

)
polynomials whose span contains all the polynomials f1, ..., fm.

Conclude that m ≤
(
n+4
4

)
.

(c) Can you improve the bound by finding a smaller set of polynomials whose span contains all
the polynomials f1, ..., fm? What’s the best bound you can get?

(d) Show that there are
(
n+1
2

)
points in Rn which determine two distances.

(e) (difficult) Can you find a similar bound for the maximum number of points in Rn determining
at most s distances?

Problem 3.2. In this problem we aim to show that there are no 4 points in the plane such that
the distance between each pair is an odd integer. Assume for contradiction that there are four such
points. We may as well assume that one of them is 0 and that the other ones are a, b and c. Then
||a||, ||b||, ||c||, ||a− b||, ||a− c||, ||b− c|| are all odd integers.

(a) Show that for any odd integer m, we have that m2 ≡ 1 (mod 8).

(b) Show that 2⟨a, b⟩ ≡ 1 (mod 8).

(c) Let A =
[
a b c

]
. Show that ATA has rank 3, and derive a contradiction from this.

Problem 3.3. (difficult) Show that there cannot be more than
(
n+1
2

)
equiangular lines in Rn.

(Recall that if the angle between two vectors v, w in Rn is θ, we have that cos θ = ⟨v,w⟩
|v||w| ).
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4 Algorithmic Problems

Problem 4.1. (Computing Fibonacci numbers) The Fibonacci numbers are defined by F0 = 0, F1 =
1 and Fn+2 = Fn+1 + Fn. So the first few Fibonacci numbers are 0, 1, 1, 2, 3, 5, 8, 13.

(a) Write down the recurrence relation defining the Fibonacci numbers on matrix-vector form.

(b) Given a number x, show that we can compute the value of x2k by performing k multiplications.

(c) Given a number x, show that we can compute the value of xn by performing at most 2 log2(n)
multiplications.

(d) Devise an algorithm for computing the nth Fibonacci number by performing only O(log2(n))
multiplications and additions.

Problem 4.2. Given a graph with n vertices, we might want to be able to find out whether or not
there exists a triangle in the graph (i.e three vertices all of which are connected by edges). Assume
that we have an algorithm computing the product of two matrices using at most O(nα) operations,
for some constant α.

(a) Show that there is an algorithm that uses at most O(nα) operations which, given a graph with
n vertices, determines whether or not that graph has a triangle.

(b) Show that there is an algorithm that uses at most O(nkα) operations which, given a graph
with n vertices, determines whether or not that graph has a subset of 3k vertices all of which
are connected by edges.

Problem 4.3. Given two graphs G and H we might be interested in determining whether or not
they are isomorphic - that is whether there exists a permutation of the vertices of G turning it into
H. What is wrong with the following argument that there is a polynomial algorithm for deciding
whether or not two graphs are isomorphic? Without loss of generality the vertex sets of G and H
are both {1, 2, ..., n}. We first calculate the eigenvalues and eigenvectors of the adjacency matrices
of G and H. It is then easy to test whether there is a permutation of {1, 2, ..., n} that (when applied
to the coordinates) takes each eigenvector of G to an eigenvector of H with the same eigenvalue,
and G and H are isomorphic if and only if such a permutation exists.

Problem 4.4. (difficult) Multiplying two matrices A,B takes a lot of time. But what if you already
have a candidate matrix C, and want to check if AB = C? Assume you are happy to accept a small
probability of error. Devise an algorithm which given three matrices A,B,C checks if AB = C in
O(n2), getting the correct answer with probability > 99%.

5 Graph Problems

Problem 5.1. Let G be a graph with adjacency matrix A. Show that the (i, j)−entry of Ak counts
the number of walks of length k from i to j in G.

Problem 5.2. Calculate the eigenvalues of Kn and Km,n. (Kn is the complete graph on n vertices,
ie the graph for which all pairs of vertices are connected by an edge. Km,n is the complete bipartite
graph with n vertices in the first vertex class and m in the second - look up what this means!)

Problem 5.3. Given is a graph G on n vertices with adjacency matrix A whose eigenvalues are
λ1 ≥ ... ≥ λn. Let ∆ denote the largest degree of any vertex in G, and let δ denote the smallest
degree. Show that:

(a) |λi| ≤ ∆ for every i.

(b) If G is connected, then G is regular if and only if λ1 = ∆.

(c) If G is connected, then G is regular and bipartite if and only if λn = −∆. (Look up what a
bipartite graph is!)

(d) δ ≤ λ1 ≤ ∆.

Problem 5.4. Prove that the matrix J (all of whose entries are 1) is a polynomial in the adjacency
matrix of a graph G if and only if G is regular and connected.
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Problem 5.5. (difficult) Let G be a graph in which every edge is in a unique triangle and every
non-edge is a diagonal of a unique 4−cycle. Show that G is k−regular, for some k, and that the
number of vertices of G is k2/2 + 1. Show also that k ∈ {2, 4, 14, 22, 112, 994}.

Problem 5.6. (difficult) Show that the edges ofK10 can’t be partitioned into three disjoint Petersen
graphs.

6 Hamel Basis Problems

Problem 6.1. Are there any functions f : R → R such that f(x+ y) = f(x)+ f(y) for all x, y ∈ R,
but which are not on the form f(x) = ax for some constant a ∈ R. [Hint: Look up what a Hamel
basis is.]

7 Challenge Problems

Problem 7.1. There are 13 coins with real numbers on them, such that given any coin, the other
12 can be split into two groups of 6 each, such that the sum of numbers of one group is the same as
the sum of numbers of the other. Show that all the coins have the same numbers.

Problem 7.2. Find all real numbers r such that a 1 × r rectangle can be tiled by (finitely many)
squares

Problem 7.3. You are at a party where no-one has more friends than you do. You discover that
every two people there have exactly one mutual friend present. Prove that everybody is your friend.
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8 Hints

Problem 1.1.

(a) Using Gaussian elimination we can put the matrix on diagonal form. Why does this preserve
the row and column ranks?

(b) Use part (a) to conclude that it’s enough to show rk(AB) ≤ rk(B). Then think of the matrices
as linear maps between vector spaces. How does the rank of a matrix relate to the image of
the corresponding map?

Problem 1.2. (a) Use the second method in the Oddtown proof from the lecture.

Problem 1.3. Use the second method in the Oddtown proof from the lecture.

Problem 1.4. Use the second method in the Oddtown proof from the lecture. It might be useful
to show that the matrix MTM is positive definite.

Problem 1.6. Let U be the vector space over F2 which is spanned by the indicator vectors of the
clubs, then consider U⊥.

Problem 2.1. (a) Think of the lines as sets of points, and consider the indicator vector vi of each
line li. Can you show that the vectors v1, ..., vm span the entire space?

Problem 3.1. (a) What happens if you evaluate fi at vj?

Problem 3.2. (c) Compute the determinant of ATA modulo 8 and show that it’s non-zero.

Problem 5.3.

(b) Consider the vector (1, 1, ..., 1).

(d) How does λ1 relate to the value of xTAx for a vector x?

Problem 7.1. Start by solving the problem when all the numbers on the coins are integers.
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