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1 Introduction

This lecture aims to show how the construction of a graph, partly using some tools from linear alge-
bra, leads to the solution of two seemingly unrelated and very old problems. The first of the problems
is called Borsuk’s conjecture, and the second one is a generalisation of the Hadwiger–Nelson
problem.

The lecture will closely follow some lectures given by Béla Bollobás on these problems as part of the
Part III Combinatorics course at University of Cambridge in Michaelmas in 2022.

1.1 Borsuk’s Conjecture

First, let’s clear up some terminology. The diameter of a set is the distance between the two points
in the set that are furthest apart (technically, it’s the supremum of all possible distances between
points in the set). Note that for a circle or a sphere, this coincides with the usual definition.

In 1932, Borsuk showed that a ball (that is, a solid sphere) can be dissected into four parts, each
of which has diameter strictly smaller than the diameter of the ball. In fact, he showed something
more general: an n−dimensional ball can be covered with n + 1 sets, each of which has diameter
smaller than the ball. This led him to conjecture the following:

Conjecture 1 (Borsuk’s Conjecture) Any bounded subset of Rn can be split into n+1 sets,
each of which has smaller diameter than the original set.

For a long time, people thought the conjecture was true, but no one managed to find a proof.
Progress was made several times, in 1946 it was shown to be true for smooth convex sets, in 1971
it was shown to be true for centrally-symmetric sets and in 1995 for bodies of revolution. It was
therefore a big surprise when in 1993 Kalai and Kahn showed that the conjecture was false. Not only
did the conjecture turn out to be false, but it was very false, in the sense that the largest number of
sets of diameter smaller than 1 you might need to cover a set of diameter 1 in n dimensions, grows
exponentially in n. The proof is surprisingly simple, and by the end of this lecture we will have an
idea of how it goes.

1.2 The Chromatic Number of Euclidean Space

How many different colours do you need to colour the plane in such a way that no points that are
exactly distance one apart have the same colour? It’s not that hard to show that seven colours are
enough, for example by colouring the plane as in the picture below.

On the other hand, three colours is not enough, which can be seen by trying to colour the vertices
of the black triangles in the same picture - you will need at least four colours to make sure no points
at distance 1 have the same colour.

The exact answer is actually still unknown, it has so far been narrowed down to either 5, 6 or 7. The
fact that 4 colours is also not enough wasn’t proven until 2018 when someone found a set of 1581
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points in the plane which can not be coloured with 4 colours.

So we’re sort of stuck trying to find the exact number of colours needed for the plane. But what
about higher dimensional spaces? Intuitively it should be harder to pin down the answer, and it is,
but what if we instead ask for an approximate answer, or even just a lower bound for the number
of colours needed? The following was conjectured by Erdős at some point (I don’t know when):

Conjecture 2 The number of colours needed to colour Rn such that no points at distance 1
have the same colour, is exponential in n.

For many years, no one managed to prove this, but by the end of this lecture we will have seen a
simple proof that the conjecture was true.

2 L−intersecting families

In the combinatorics lecture, we talked about some classic problems, one of which was the problem
of Oddtown. We showed that in a town with n people who are members of some different clubs,
assuming that each club has an odd number of members and that any two clubs have an even number
of members in common, there can be at most n clubs in total. We can generalise this notion, and
talk about L−towns.

Definition 1 Let L be a set of (non-negative) integers. If we have a town with n people who
are members of some different clubs, we say that the town is an L−town if the following holds:

• The number of members in a club is never in the set L

• The number of members that any two clubs have in common is in the set L

We tend to think of the people in the town as the set [n] = {1, 2, ..., n}, and the clubs as subsets
A1, ..., Am of this set. Then an L−town is exactly a family of L−intersecting subsets, specifically
we require that

• |Ai| ̸∈ L for all i

• |Ai ∩Aj | ∈ L for all i ̸= j

We can similarly talk about L−towns modulo p, for any prime p. The definition is exactly the
same, except that the conditions on |Ai| and |Ai ∩Aj | are considered modulo p.

Our first aim is to, given |L| and n, prove a bound on the number of clubs in an L−town. Equiva-
lently, we want to bound the size of an L−intersecting family. We have the following theorem:

Theorem 1 Let L = {l1 < ... < ls} be a set of s integers, and let A1, ..., Am ⊂ [n] be an
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L−intersecting family of m sets. Then the following holds:

m ≤
(
n

0

)
+

(
n

1

)
+ ...+

(
n

s

)
The result holds regardless of whether we consider an L−intersecting family modulo p or not.

Let’s check that this agrees with our previous results. If we consider L−intersecting families mod-
ulo p = 2 and s = |L| = 1 the theorem says m ≤ n + 1. This exactly corresponds to the example
with Oddtown (if L = {0}), and the theorem gives a bound which is very close to our previous bound.

Proof of theorem: As usual, we think of the sets (or clubs) A1, ..., Am ⊂ [n] as n−dimensional
indicator vectors, say v1, ..., vm where vi has a 1 in position j if and only if j ∈ Ai. We will work in
Rn in the case where we don’t consider the conditions modulo p, and in Fn

p when we consider the
conditions modulo p. Both R and Fp are fields, so linear algebra works as usual (although in the
second case, note that dot products are not technically inner products, since ⟨v, v⟩ = 0 (mod p) does
not imply v = 0).

As usual, we define the dot product as

⟨v, w⟩ = v1w1 + v2w2 + ...+ vnwn

The key of the proof will be to consider the following polynomials. For each vector vi corresponding
to a set Ai we define:

fi(x1, ..., xn) = (⟨vi, x⟩ − l1)(⟨vi, x⟩ − l2)...(⟨vi, x⟩ − ls)

This polynomial has degree s and is 0 if and only if ⟨vi, x⟩ is in L.

We define associated polynomials f̃i(x) by expanding the factors of fi(x) and replacing every occur-
rence of xk

j for some k by xj . For example, if

fi(x1, x2, x3) = 5x1x
3
2x3 − x2x

2
3 + x5

1 + 4x2
2x

3
3

we get
f̃i(x1, x2, x3) = 5x1x2x3 − x2x3 + x1 + 4x2x3 = 5x1x2x3 + 3x2x3 + x1

Note that if we only care about vectors x such that all entries xj are 0 or 1, the value of xk
j is the

same as xj , and hence the following also holds for f̃i(x):

• For any x with entries in {0, 1}, we have that f̃i(x) = 0 if and only if ⟨vi, x⟩ ∈ L. In
particular, since the vj have entries only in {0, 1} and ⟨vi, vj⟩ = |Ai ∩ Aj | we get that for

any L− intersecting family, f̃i(vj) = 0 if and only if i = j.

• f̃i(x) has degree at most s

The first of these observations implies that the f̃i are linearly independent (seen as elements of the
vector space of polynomials in x1, ..., xn over Rn or Fn

p ). Indeed,∑
λif̃i(x) = 0 =⇒

∑
λif̃i(vj) = 0 =⇒ λj f̃j(vj) = 0 =⇒ λj = 0

The second observation means that the polynomials are multilinear polynomials of degree at most
s, that is they live in the span of the polynomials of form xi1xi2 ...xik where 0 ≤ k ≤ s. There are
exactly

(
n
0

)
+

(
n
1

)
+ ... +

(
n
s

)
such polynomials, so the dimension of this vector space is at most (in

fact exactly) (
n

0

)
+

(
n

1

)
+ ...+

(
n

s

)
Hence we are done using that f̃i are all linearly independent. ■

It’s worth noting that the version of the theorem which does not consider sizes modulo p follows
immediately from the modulo p version: just consider a prime p > n. However the opposite impli-
cation is less clear.
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This is already a pretty strong theorem. For example, considering L = {0, 1, 2, ..., s − 1}, we note
that the family of all subset of size s has size

(
n
s

)
and is L−intersecting (in the modulo p case we

also need p > s for this to work). Hence we have an upper bound on the number of sets (or clubs)
m which is a polynomial in n of the same degree as the lower bound. However, to make progress on
the two problems from the introduction, we will need a different but very similar theorem:

Theorem 2 Let r be an integer and let L = {l1 < ... < ls} ⊂ {0, 1, ..., r − 1} be a set of s
integers. Let A1, ..., Am ⊂ [n] be an L−intersecting family of m sets. If it additionally holds
that |Ai| = r for all i, and that r + s ≤ n, then the following holds:

m ≤
(
n

s

)
This theorem is in fact also true in the modulo p case, but the proof of that is a bit trickier than what
we will show here. We will however prove a special case of the modulo p version of the theorem later.

Proof of theorem: We work in R[x1, ..., xn], the set of real polynomials in x1, ..., xn, and view
this as a vector space over R. As usual, think of the sets A1, ..., Am as indicator vectors v1, ..., vm in
{0, 1}n ⊂ Rn. We make the following definitions:

• For each set I = {i1, ..., ik} ⊂ [n] let mI(x) = xi1xi2 ...xik .

• Let pI(x) = mI(x)(
∑n

i=1 xi − r).

• As before, define for each set Ai an associated polynomial

fi(x) = (⟨vi, x⟩ − l1)(⟨vi, x⟩ − l2)...(⟨vi, x⟩ − ls)

• For any polynomial g(x), define g̃(x) in the same way as in the last proof (i.e. we obtain g̃ by
replacing all occurrences of xk

j for some k > 1 by xj)

As before, we know that f̃i(x) are linearly independent and that they are all in the span of

M = {mI

∣∣ |I| ≤ s}

which is a subspace of dimension
(
n
0

)
+ ...+

(
n
s

)
. Furthermore, we claim that the set

{f̃1, ..., f̃m} ∪ {p̃I
∣∣ |I| ≤ s− 1}

is linearly independent. Note that it has size m+
(
n
0

)
+ ...+

(
n

s−1

)
and that all the polynomials are

in the span of M , so if we can show this we are done.

First we show that the p̃I(x) are all linearly independent. Indeed, assume
∑

λI p̃I(x) = 0. Evaluating
at the indicator vector vJ of a set J ⊂ [n] gives that

p̃I(vJ) = pI(vJ) = mI(vJ)(|J | − r) =

{
0 if |J | < |I| or if |I| = |J | and I ̸= J

|I| − r ̸= 0 if J = I

Hence if we evaluate the sum
∑

λI p̃I(x) at vJ for all J ⊂ [n] or size at most s− 1 in the order from
smallest to largest, at any point of the process the sum will simplify to just λJ(|J | − r) = 0, giving
that λJ = 0 since |J | ≤ s − 1 < r (note that the order is important, since we can’t say anything
about pI(vJ) for sets I such that |I| < |J |, but we will already know that λI = 0 for such I if we do
it in the correct order). This shows that the p̃I(x) are linearly independent.

Finally, we show that the polynomials f̃i and p̃I are linearly independent. Assume that
∑

λif̃i =∑
µI p̃I . Evaluating at vj (the indicator vector of the jth set) we get that p̃I(vj) = pI(vj) =

mI(vj)(r − r) = 0 using that |Aj | = r, while f̃i(vj) = fi(vj) = 0 unless i = j (as A1, ..., Am is an
L−intersecting family, the reasoning here is the same as in the previous proof). We conclude that
λj = 0, for every j, and so

∑
µI p̃I = 0 giving that µI = 0 for every I as well (as the p̃I are linearly

independent). Hence we are done. ■

Reading this proof carefully, we see that every part of it works over Fn
p as well, except when we

proved that the polynomials p̃I for |I| ≤ s− 1 are linearly independent. The reason this step might
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not work is that pI(vI) = |I| − r might not be non-zero over Fp. In the proof above, we had
|I| ≤ s− 1 < r which was enough to conclude it’s non-zero, but in the modulo p case we need to be
more careful. However, if we let r = 2p− 1 and s = p− 1, it’s clear that

|I| − r = |I| − 2p+ 1 ∈ {1− 2p, 2− 2p, ..., (p− 1)− 2p}

in all the cases we care about. Crucially, it’s not 0 modulo p, so the proof carries over exactly as
written. We hence get the following corollary by picking L = {0, 1, 2, ..., p− 2}:

Corollary 1 Let p be a prime and let n = 4p− 1. If A1, ..., Am are subsets of [n] of size 2p− 1
such that |Ai ∩Aj | ≠ p− 1, then

m ≤
(
4p− 1

p− 1

)

3 Borsuk’s Conjecture and The Chromatic Number of Eu-
clidean Space

We now have the tools to tackle the problems from the introduction. Both the proofs that we are
about to see rely on considering n = 4p− 1 for some prime p and constructing a graph G as follows:

• Let the vertex set V (G) be the set of all subsets of [n] of size 2p−1. We can view this a subset
of {0, 1}n ⊂ Rn, where a set A is associated with the point x ∈ {0, 1}n such that xi = 1 if and
only if i ∈ A.

• Put an edge between A and B if and only if |A ∩B| = p− 1.

The key point will be that for any vertices A and B that are connected by an edge, the distance
between the corresponding points in Rn is

√
2p. In particular, all edges have the same length (if we

embed the graph in Rn as described above).

Theorem 3 For large enough n, the number of colours needed to colour Rn such that no two
points at distance 1 have the same colour is at least 1.05n.

Proof: Start by considering n of the form 4p−1 for some prime p and define the graph G as above.
We embed it in Rn in the same way as described before. Let us colour the points of Rn such that no
two points at distance

√
2p have the same colour (finding a lower bound for the number of colours

used in this colouring is the same as our original problem, after rescaling).

Consider a set of vertices in the graph that all have the same colour. No two of them can be adjacent
in the graph since all edges in the graph have length

√
2p, which means that the sets A1, ..., Am

corresponding to the vertices are such that |Ai∩Aj | ≠ p−1. By the last corollary from the previous
section, this means that m ≤

(
4p−1
p−1

)
. Hence there can be at most this many vertices in the graph of

any given colour, so the number of colours is at least(
4p−1
2p−1

)(
4p−1
p−1

) =
3p(3p− 1)...(2p+ 1)

(2p− 1)(2p− 2)...p
≥

(
3

2

)p

Finally, it’s well-known that there is a prime between x and 2x for any integer x. Hence for any n
we can find a prime p ≥ n

8 such that 4p− 1 < n, giving the following lower bound on the number of
colours for any n:

#colours ≥
(
3

2

)p

≥
(
3

2

)n/8

> 1.05n

■

Theorem 4 For large enough N , there exists a subset of RN of diameter 1 such that the number

of sets of diameter smaller than 1 needed to cover it is at least 1.05
√
2N .

Proof of theorem: Again, start by considering n of the form 4p− 1 for some prime p and define

the graph G as above. Let N =
(
n
2

)
. This time, we will embed the graph in RN = R(

n
2) in the
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following way.

Associate the vertex A with the set VA defined by

VA = {{x, y}
∣∣ x ∈ A, y ̸∈ A}

Note that for subsets A,B of [n] of size 2p− 1,

|VA \ VB |+ |VB \ VA| = 2
(
|A ∩B|(|B| − |A ∩B|) + (|A| − |A ∩B|)(n− |A| − |B|+ |A ∩B|)

)
= 2(2p− 1− |A ∩B|)(1 + 2|A ∩B|)

(1)

This is maximized when |A ∩ B| = p − 3
4 , so since |A ∩ B| is an integer the unique maximum is

|A ∩B| = p− 1, so exactly when there is an edge between A and B in the graph G.

Now, the sets VA can be associated with points in {0, 1}N ⊂ RN in the usual way (note that VA is
a subset of the subsets of [n] of size 2, which is a set of size N =

(
n
2

)
). This let’s us embed G into

RN in such a way that the distance between any two vertices is given by the formula in equation
(1). Note in particular that any two vertices connected by an edge are at distance

√
2p(2p− 1) from

each other, and that all other pairs of vertices are closer to each other. Hence, partitioning the set
of vertices into sets of diameter <

√
2p(2p− 1) exactly corresponds to finding a colouring of the

vertices of G in which no adjacent vertices have the same colour. By the same reasoning as in the

previous proof, we get that we need at least
(
3
2

)p
sets. Using that n >

√
2
(
n
2

)
=

√
2N and that for

any n there is a prime p ≥ n
8 such that 4p− 1 < n, we get a lower bound of 1.05

√
2N in general. ■
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