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Abstract

One of the main goals of interpretability is to reverse-engineer neural networks. For this, a rea-
sonable subgoal is to determine the “variables in terms of which a neural network thinks”. In
this paper, we run with the assumption that these variables correspond to particular vectors
in activation space, which we call ‘features’, whose linear combinations are the activation vec-
tors on various inputs. We provide an exposition of certain techniques from the literature for
reconstructing these features from activation data, discussing both approaches grounded in the
assumption of there being many features, few of which are active on any one input; as well
as approaches grounded in the assumption that there are relatively few features. We finish by
suggesting experiments that might let us figure out which of these two options is closer to the
truth.
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1 Introduction

Even though we broadly understand how to train models that do well on certain tasks,

our understanding of what algorithms these neural networks learn is currently poor.

Although we can inspect the weights of a neural network, thereby obtaining a perfect

low-level description of what a trained model does, we presently lack methods for under-

standing the algorithms implemented in trained models at a level of abstraction above

that of giant inscrutable matrices — in particular, for reducing neural networks to human-

understandable computer programs. AI interpretability sets out to develop such an un-

derstanding. We see this as a promising and important research direction for ensuring

the safety and alignment of future (superintelligent) AI systems.

For translating neural networks into human-understandable computer programs, a

promising first step is understanding the variables that would appear in these programs,
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to borrow a framing outlined in Olah (2022). Olah suggests seeing activations as storing

the values of these natural variables in a neural network’s thinking. The question that

then arises is how the variables are represented, or stored, in the activations of a model.

In this paper, we will make the assumption that variables correspond to directions in

activation space, or equivalently, to unit vectors f1, . . . , fk in activation space; we call

these vectors the features of that activation space.1 We make the further assumption

that features are stored in activations linearly, by which we mean that the activation

vector in each activation space of a model2 is a linear combination of these feature

vectors (for that particular activation space), with coefficients telling us which of the

features are active. That is, a =
∑k
j=1 cjfj.

3 In the present paper, we will mostly be

taking all of these assumptions for granted, and making the realistic assumption that we

know a dataset of activation vectors a1, . . . ,an, but the features fj and coefficients cij in

ai =
∑k
j=1 cijfj are a priori unknown to us — these are exactly the hidden true variables

we would like to be able to figure out. This brings us to the main two questions this

paper hopes to address:

1) Given just a dataset of activation vectors, how might one reconstruct the features?

2) Are activation vectors made out of few features, or are they made out of many?4

Here is what we mean by the above more precisely. In the first question, we assume

we have (generated by running some representative sample of inputs through the neu-

ral network up to a particular layer in which activations are recorded), and we are

looking for ways to determine the correct linear decompositions of activation vectors,

ai =
∑k
j=1 cijfj. That is, we want methods for finding such linear decompositions which

are useful for understanding the neural network’s computation. We will provide a (non-

exhaustive) review of some methods proposed in the literature for doing this. All the

methods we will consider will only use activation data — i.e., not the weights of the

model (beyond using the weights to compute the activations). It will turn out that the

methods can be neatly partitioned into those that are easiest to make sense of if one

assumes there are many features, by which we mean that k is at least d, the dimension

of the activation space — we discuss this case, sometimes referred to as ‘superposition’,

in Section 2; and those that are easiest to make sense of if one assumes there are few fea-

tures, by which we mean that k is at most d — we discuss this case in Section 3. As we

see the superposition case as being relatively well-represented in recent interpretability

discourse already, we have decided to dedicate more space to the case with few features

in this paper.

As for the second question — i.e., whether there are few features, or many — we see it

as roughly corresponding to the question of whether the superposition picture is correct,

or more precisely as roughly corresponding to whether representations are superpositional

1 We will use the convention that all vectors are row vectors by default.
2 for instance, the activations in hidden layer 2 of a feedforward MNIST classifier, or the activations in
the residual stream of a transformer language model at the 5th layer and 10th token position

3 An example: when a vision model performs computation on a picture of a dog, the activation vector
in a particular layer might be a linear combination of a “dog fur at this part of the picture” feature,
a “patch of grassy texture in this position” feature, a “partial dog nose” feature (Nanda (2023)), and
a number of other features, possibly including ones not as easily understandable to humans.

4 possibly sparsely in the latter case — that is, we are not saying that any individual activation vector
has many nonzero cij
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or compositional (from Olah (2023)), though the focus of our framing is slightly different.

We begin to address this question in Section 4 by proposing experiments that might let

us figure out which of these two options is closer to the truth.

2 Decomposition methods: the case of many features

Let us first very briefly consider some methods for decomposing activations into features

that make sense if we assume there are many features. In this setting, while there are

typically many ways to decompose any (activation) vector as a linear combination of

the features — for instance, one can typically write any activation vector as a linear

combination of any d arbitrarily chosen features — it is canonically thought (Elhage et

al. (2022)) that activation vectors are sparse linear combinations of features, meaning

that in ai =
∑k
j=1 cijfj, only a small number of the coefficients cij should be nonzero.

The thought is that while there are in principle many concepts that could be active in

a model, on any single input, only a small number of the concepts are active. Restating

this as an observation about the true features: we expect the set of features to have

the property that any activation vector is a sparse (that is, with few nonzero entries)

linear combination of the features. To our knowledge, the best idea from the literature for

finding the true features is to simply look for a set of features that satisfies this property.

Sharkey et al. (2023) search for such a sparse representation of activation vectors by

training a sparse autoencoder. And in fact, they manage to closely recover the ground

truth feature decomposition in a toy setting.

In the experiment with toy data, the authors first construct a set of random unit

norm features f1, . . . , fk, and then let the activation vectors be random sparse linear

combinations of these features.5 They then train a sparse autoencoder on activation

data alone that aims to recover the features by looking for any sparse basis. The sparse

autoencoder they use is a 2-layer MLP where the first and last layer have the same number

of neurons, and the middle layer has more. More precisely, the architecture they use is

ã = ReLU (aW + b)D, where W,b,D are trainable parameters, with the constraint

that the rows d1, . . . ,dℓ of D are unit vectors.6 Here, we think of the activation vector a

as the input, and we denote the output ã. We do so because the loss we choose incentivizes

ã to be a close to a:

L = Lreconstruction + Lsparsity =
1

n

n∑
i=1

||ai − ãi||22 + α
1

ℓ
||ReLU (aiW + b)||1

The L1 term in the loss incentivizes the mass in the middle layer to be spread sparsely.

We can thus think of ãi =
∑ℓ
j=1 ReLU (aW + b)j dj as the sparse linear decomposition

of activation vector ai in terms of features dj. The hope is that this lets us recover the

ground truth features. And, at least in the toy setting, it does turn out to recover correct

features quite well, as can be evaluated (assuming access to the ground truth features)

5 There is more to be said about what this random process was like exactly — for instance, about what
the authors did to make the presence of features be correlated and for the features to show up with
varying frequencies — but we will not go into the details here.

6 Recall that our convention is that all vectors are row vectors by default.
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by noting that the average over ground truth features fj of the maximum dot product

with some dj is close to 1, at least with the right choice of the hyperparameters ℓ and α.

When one tries to apply this to real models, one faces the problem of having to choose

these two hyperparameters correctly without having access to ground truth features.7

The authors come up with a few observable proxies that seem to correlate with whether

correct features are recovered in toy models, though the results for real models remain

mixed. For another example of sparse decomposition in a non-toy model, we refer the

reader to Goh (2023).

3 Decomposition methods: the case of few features

In this section, we explore techniques for identifying interpretable directions in activation

space in the case when the number of encoded features is smaller than d, the dimension

of the activation space. In the special case when each neuron encodes a unique feature,

these directions are just the basis vectors of the neuron basis. However, in general, even

if there are fewer features than neurons, it is still possible that features are not en-

coded as directions in the neuron basis.8 In this general case, we would like to establish

tools for identifying the feature directions. In this section, we explore a family of 3 such

methods: singular value decomposition (SVD), principal component analysis (PCA), and

non-negative matrix factorization (NMF).

3.1 Mathematical Techniques

Suppose that the true number of features is k < n. That is, we hypothesize that each

of the n activation vectors ai (with i = 1, . . . , n) can be reconstructed using a linear

combination of feature vectors fj (with j = 1, . . . , k) with a set of k coefficients cij . This

is quite a surprising property for a set of n≫ d vectors to have. Again, in analogy with

the reconstruction method in the many-features section, our plan is to try to find the

correct features by just looking for a set of features which satisfies a surprising property

about how activations should be composed of features, which the correct set of features

satisfies. In this case, as the true features would let us recover all ai, we will be searching

for a canonical set of features with this property.

3.1.1 SVD

The most straightforward approach to this problem is to find choices of features and

coefficients which minimize the distance between estimates ãi =
∑k
j=0 cijfj and ai. If

the distance metric we use is the sum of the magnitude of the vectors ai − ãi, then we

are trying to solve the optimization problem min{fj} min{cij}
∑n
i=1

∣∣∣∣∣∣ai −∑k
j=1 cijfj

∣∣∣∣∣∣2.
In order to solve this minimization problem, we want to find the k directions in activa-

tion space in which the summed squared components of the vectors ai in these directions

7 in particular, even if one assumes there are more than d features, this does not tell one exactly how
many there are

8 In fact, in certain cases — for instance, for the residual stream of a transformer — there is little
privileging any basis.
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are largest on average, so that we can subtract the components of the activation vectors

in these directions (i.e. choose cij = ai · fj) to leave only the d− k components which are

smallest.

We can write this problem in an equivalent way using matrices. If d is the dimension of

the activation space, then define matrices A,F,C by (A)il = (ai)l, (C)ij = cij , (F)jl =

(fj)l (with l = 1, . . . d) and the problem can be rewritten as finding F,C to optimize:

min
F,C

||A−CF||2F (1)

where the subscript F denotes Frobenius norm of the matrix. That is, we are trying to

find an approximate factorization of the A matrix with shape n × d into a product of

matrices with shapes n× k and k × d, which necessarily is rank at most k.

To solve this minimization theorem we can use the Singular Value Decomposition of A:

A = UΣV⊺ where U,V are Orthogonal matrices with sizes n×n and d× d respectively

and Σ is a rectangular diagonal matrix of size n × d with non-negative entries on the

diagonal (the singular values of A). Then, ordering the basis so that the elements of Σ are

decreasing down the diagonal, we define Σ̃, Ũ and Ṽ by taking only the first k columns

(and rows in the case of Σ̃) from Σ, U and V respectively. Then, the Eckart-Young-

Mirsky Theorem (Eckart & Young (1936)) states that the solution to the minimization

problem (1) is C = ŨΣ̃,F = Ṽ⊺.

Intuitively, the Eckart-Young Theorem makes sense: if you want to find the best set

of k features to describe the set of activation vectors ai, you should pick the directions

(right singular vectors) with the top k singular values of the set ai. This also has the

nice property that when we are unsure about the true number of features encoded by

the model, adding more features won’t change the features we have already found.

PCA is a close cousin of SVD that, in our framing, can be thought of as taking one

of the features in every activation vector to be the mean of all the activation vectors to

begin with, and then performing SVD on the vectors remaining to be decomposed.

3.1.2 NMF

Non-negative matrix factorization is an important modification of SVD in which the

components of the feature vectors (fj)l and the coefficients with which they are added

to reconstruct activations cij are required to be non-negative, i.e. we look to optimize

minF,C≥0 ||A−CF||2F where F,C ≥ 0 means that these matrices only have non-negative

elements.

There are a few reasons why we might want to impose this restriction on C and F:

• Assuming the nonlinearity in the neural network is ReLU, the components of each

ai are positive (in the neuron basis), which is compatible with it being a product

of non-negative matrices. It may be hard for the model to encode meaning in

directions which have negative components in the neuron basis. There is a sense in

which this would imply that the components “do not have independent meaning”,

as it would be impossible for there to be an input on which only a negative feature

is active.

• Insisting that activation vectors can only be composed out of positive linear

combinations of features may result in features corresponding to more human-
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interpretable concepts Olah et al. (2018); Alammar (2020), because these features

can either be present or not present in an activation vector, but they cannot be

present with a negative coefficient.

Based on these reasons and the empirical observation that NMF sometimes leads to more

interpretable directions than the more general SVD, this technique has been often used

(Hilton et al. (2020); McGrath et al. (2021); Olah et al. (2018)) to identify features in

neural networks. Finding the global minimum of the NMF optimization problem is known

to be NP-hard in general (Ding et al. (2005)), but local minima can be found by numerical

methods. Unlike SVD, NMF comes with no guarantee that the feature directions we find

when we assume there are k + 1 features will contain the feature directions found under

an assumption of k features. This means that our ability to identify with NMF the true

features used for computation may depend on correctly identifying the number of features

that the model is using.

3.2 Applications

The techniques introduced in this section have been used several times to identify human-

interpretable feature directions in the activation space of models. In this section we

demonstrate how to do so, following the procedure used by McGrath et al. (2021) to

find interpretable features in the activations of AlphaZero. AlphaZero has a Resnet ar-

chitecture with 20 blocks followed by a policy head and a value head. Each block consists

of (Conv, ReLU) ×2 and a skip connection (add, ReLU), and each convolution has 256

channels and a kernel size of 3× 3 with stride 1. Therefore the output of each block is a

tensor of activations of size 8×8×256, or equivalently, a 256 dimensional vector for each

board square. To identify feature directions, the authors followed the following steps:

1. Pick a particular set of activations (the output of one of the blocks) to study.

2. Sample activations for 10000 game states and form a set of 8× 8× 10000 = 640000

activation vectors. Stack these vectors into a matrix A with shape (640000, 256).

3. Choose a number of features to decompose the activation vectors into. After ex-

perimenting with a range of possible numbers, the authors chose 36 features.

4. Use NMF to decompose A into a 640000×36 matrix of coefficients C and a 36×256

matrix F of 36 feature vectors.

5. To visualise these features, pick a board state and a particular feature, and extract

the elements of C which correspond to the coefficients of that feature for each of

the 64 squares on the board. Then visualise these coefficients by superimposing

them onto the board state. An example of such a visualization is shown in figure 1.

This process is not specific to studying AlphaZero at all. For example, Hilton et al.

(2020) and Alammar (2020) used NMF to interpret RL vision and language models

respectively, with some small modifications:

• In step (1), Hilton et al. (2020) uses the activations at the outputs of one of the

convolutional layers. Alammar (2020) uses the activations in the MLP in one of the

layers of the transformer.

• In step (5), Hilton et al. (2020) visualises a particular feature by finding images

(observations) in which some part of the image has a high coefficient associated with
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(a) (b) (c)

Fig. 1: Visualising features in (A) AlphaZero, (B) an RL agent trained on Coinrun, and

(C) a Language Model. Many of the features are at least somewhat human-interpretable.

(1a) Coefficients of an identified feature for each of the 64 activation vectors for two given

board states, superimposed on the board. The higher the coefficient, the darker the shade

of green. This feature is ‘developed diagonal moves for opponent’ (McGrath et al. (2021)).

(1b) The region of the RL agent’s observations which corresponds to an activation vector

with high coefficient of a given feature, visualised for multiple observations. Since each

convolution mixes together nearby activations, the region of the observation identified is

more than one pixel. The feature visualised at the top is ‘coin’ and at the bottom ‘agent

or enemy moving right’ (Hilton et al. (2020)). (1c) Each token input into a transformer

coloured by which feature is present in that token’s activation vector with highest coeffi-

cient. Features include words at the beginning , auxiliary verbs , pronouns , and so on

(Alammar (2020)).

the feature, and showing those parts of the observation. Alammar (2020) visualises

features by superimposing colours on top of each token corresponding to which

identified feature is present with highest coefficient (figure 1).

3.3 Modifications

Other sources use modified versions of the techniques introduced here to identify feature

directions:

Using relevance to model prediction. Graziani et al. (2023) identify feature directions

in Inception V3 (a 42 layer Convnet trained on ImageNet) not based solely on singular

directions with the largest singular values, but by finding which singular directions the

output depends on most. Having performed SVD on A, they calculate the rate of change

of the model output with respect to each of the singular directions. That is, defining

cij as the coefficient of the jth singular vector in activation ai, they multiply the jth

singular value σj by 1
n

∑n
i=1

∂ψ
∂cij

where ψ is the output of the model, which for now we

assume is one-dimensional (but the technique generalises to higher dimensional outputs

– see the paper for more details). Keeping the directions with the k highest values of
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σj · 1
n

∑n
i=1

∂ψ
∂cij

now corresponds to keeping the singular directions whose variance is

responsible for the highest variance in the output.

Using Canonical Correlation Analysis. Another variation is to use a technique from

this section to identify which subspace of activation space to project down to, but to

use a different technique to identify feature directions in this subspace. Raghu et al.

(2017) used SVD on activation vector sets in 2 different layers to reduce the dimension of

each activation space as much as they could while retaining 99% of the variance. Then,

they use Canonical Correlation Analysis (Hardoon et al. (2004)) to chose a basis in each

subspace to maximize the correlation between basis vectors.

4 How could we tell whether there are few features or many?

There are conceptual reasons, as well as empirical evidence (including important evidence

not mentioned in the previous two sections), for there being many features, and for there

being few. But we will not present a discussion of this here. Instead, we will very briefly

state a list of ideas for experiments that might distinguish between the two hypotheses.

• Train a model with n neurons at layer l. Then retrain the network, holding all

weights fixed except Wl−1,l and Wl,l+1 which are re-initialised. Do small k tech-

niques like SVD find the same features both times (as measured by cosine similarity

of features sorted by the canonical ordering of each singular vector set)? What about

large k techniques like sparse autoencoding?

• Repeat the first experiment, but use D > d neurons at layer l when retraining.

Now we want the decomposition in the narrower layer to be the same as the de-

composition into the top k features in the wide layer (in generalm we expect that

the number of features learned in the wide model is likely to be larger than in the

narrow model). Does this work better when our decomposition is with a small k

technique or a large k technique?

• Train pairs of (model with ReLU at layer l, model with ReLU and a filter which

sets to zero all but the top m activations at layer l) for a range of values of d. If

the top-m filter forces features to be aligned to the neuron basis, then the models

should only have similar performance when the number of features k ≤ d.

• We’d like to improve our confidence that sparse autoencoders have found the real

features. If we train the sparse autoencoder twice, do we get the same decomposition

of activation vectors? If we fix some weights on the sparse autencoder to hardcode

some random features into the model, but we learn their biases, does the model

choose to ignore them from its feature set by setting their bias really low so the

neurons never activate?

• Is there something correct in both the large-k and small-k pictures? For instance,

instead of doing SVD and also instead of using a sparse autoencoder for feature

decomposition, train an autoencoder in which some number δ < d of neurons have

no L1 penalty, and the rest do. The thought is that these δ features might pick

out the top δ compositional directions, and the rest will be used for capturing the

features in superposition. Will we find that the features are more interpretable this

way than in either the dense or sparse extreme?
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